
Genetic Algorithm with Self-Adaptive Mutation Controlled by
Chromosome Similarity

Daniel Smullen, Jonathan Gillett, Joseph Heron, Shahryar Rahnamayan

Abstract—This paper proposes a novel algorithm for solving
combinatorial optimization problems using genetic algorithms
(GA) with self-adaptive mutation. We selected the N-Queens
problem (8 ≤ N ≤ 32) as our benchmarking test suite, as they
are highly multi-modal with huge numbers of global optima.
Optimal static mutation probabilities for the traditional GA
approach are determined for each N to use as a best-case
scenario benchmark in our conducted comparative analysis. De-
spite an unfair advantage with traditional GA using optimized
fixed mutation probabilities, in large problem sizes (where
N > 15) multi-objective analysis showed the self-adaptive
approach yielded a 65% to 584% improvement in the number
of distinct solutions generated; the self-adaptive approach also
produced the first distinct solution faster than traditional GA
with a 1.90% to 70.0% speed improvement. Self-adaptive
mutation control is valuable because it adjusts the mutation
rate based on the problem characteristics and search process
stages accordingly. This is not achievable with an optimal
constant mutation probability which remains unchanged during
the search process.

I. INTRODUCTION

GENETIC ALGORITHMS (GA) are particularly ef-
fective to solve complex or large size combinatorial

problems [3], [2], [1]. One well-known problem is the N-
Queens problem, which deals with placing queens on a
chessboard such that they do not attack one another. An
efficient and common approach to tackle these problems
(especially for large values of N) are genetic algorithms, by
encoding positions of the N-Queens on the chessboard into
the chromosome. As with any genetic algorithm, evaluating
the fitness of the chromosomes is required to determine
the quality of candidate solutions [10], but the N-Queens
problem is different in that only those candidates with perfect
fitness are considered correct solutions to the problem, which
means a zero-attack chessboard (seen in Figure 1).

Tuning up control parameters has a crucial effect on the
GA’s performance [14], [16], [9]. We have found that by
replacing the traditional GA’s static mutation probability with
a self-adaptive mutation probability, a better performance can
be achieved when solving the N-Queens problem by con-
sidering different performance perspectives. Our objectives
focus on 1) finding as many solutions as possible within

Daniel Smullen, Jonathan Gillett, Joseph Heron, and Shahryar Rah-
namayan are with The Faculty of Engineering and Applied Science
at the University of Ontario Institute of Technology, Oshawa, Ontario,
Canada (email: {daniel.smullen, jonathan.gillett, joseph.heron}@uoit.net,
shahryar.rahnamayan@uoit.ca).

We would like to thank the SHARCNET organization for graciously
providing the high performance computing facilities we needed to run our
experiments.

a fixed budget, and 2) finding the first solution as quickly
as possible. The proposed approach adapts based on the
similarity of chromosomes in the population. The increase
in performance is compounded in larger versions of the
problem where the search space grows extremely large, such
as the situation encountered when attempting to solve higher-
order N-Queens. In this domain, deterministic methods prove
useless. The problem is in P, and the best known deterministic
approaches are of O(N2) [24]. As such, number of combina-
tions of queens that must be placed tentatively onto the board
while seeking even the first solution becomes enormous very
quickly [22], but our approach prevails.

Our software solution was written in Java, and is available
through GitHub at the following URL: http://git.io/RKfAvQ.
It is open source licensed under the GNU General Public
License, Version 3.

II. BACKGROUND REVIEW

The N-Queens problem requires that a number of queens,
N , are placed on an N × N chessboard such that they
will not attack each other. The N-Queens problem is multi-
modal, with many local optima and global optima. Like many
other complex optimization problems, the N-Queens problem
becomes staggeringly complex as the problem size increases
[5]. The problem is bound by the rules of chess.

Fig. 1. A Distinct Solution to the 8-Queens Problem (Zero-Attack Chess-
board)

Our solution includes protective embedded constraints
which restrict the structure of the chromosome - this prevents
queens from sharing rows, allowing only for queens to attack

504

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

each other on a shared column or the diagonal. When two
queens share the same diagonal, a collision occurs for each
queen, meaning that the board state is not a solution. A
solution is found when no queens on the board can attack
another. The search space size is N ! when an exhaustive
method is applied to find all possible solutions.

TABLE I
N-QUEENS PROBLEM DISTINCT SOLUTIONS

N Search Space Size (N !) Distinct Solutions [23]
8 40,320 92
9 362,880 352
10 3,628,800 724
11 39,916,800 2,680
12 479,001,600 14,200
13 6,227,020,800 73,712
14 87,178,291,200 365,596
15 1.307674368× 1012 2,279,184
16 2.092278989× 1013 14,772,512
17 3.556874281× 1014 95,815,104
18 6.402373706× 1015 666,090,624
19 1.216451004× 1017 4,968,057,848
20 2.432902008× 1018 39,029,188,884
21 5.109094217× 1019 314,666,222,712
22 1.124000728× 1021 2,691,008,701,644
23 2.585201674× 1022 24,233,937,684,440
24 6.204484017× 1023 227,514,171,973,736
25 1.551121004× 1025 2,207,893,435,808,352
26 4.032914611× 1026 22,317,699,616,364,044
. Unknown

Table I shows the massive exponential increase in problem
size as N increases, and the proportionally huge increase in
the number of distinct solutions. Based on the scale of the
problem at higher values of N , using deterministic methods
is futile - the problem is simply too big [21]. For values
of N greater than 26, the problem becomes intractable.
The number of distinct solutions for large values of N is
unknown, and the search space size becomes enormous.

Fig. 2. 8-Queens Problem Collisions Histogram, Showing Distribution
Based on Fitness Values

8-Queens is the classical version of N-Queens. The his-
togram found in Figure 2 shows the full deterministic (brute
force) traversal of the 8-Queen problem landscape, which is
characteristic of N-Queens. It details the myriad possibilities
for the number of board states which can occur even in a
relatively small problem size. Not pictured in this figure
are the 4 instances of 44 simultaneous collisions, and 2
instances of 56 collisions. These occur when 7 or all 8
queens are all placed on the diagonals, respectively. Figure
2 clearly shows that the problem is highly multi-modal even
for small problem sizes (N = 8). In this figure, 40228
non-optimal solutions with 92 global optima are displayed,
showing their distribution based on their fitness values. The
random distribution of solutions across the landscape is not
completely uniform and there are many local optima which
still represent non-optimal solutions (such as those solutions
with only 2 to 4 collisions - better than most, but still not
valid boards).

While finding the most solutions given a fixed number of
generations was the main objective of our proposed approach,
fundamentally there are two variant objectives in tackling
N-Queens. Finding the first solution as fast as possible is
an alternative goal. The latter problem can be solved in
polynomial time through conventional means [23], [24], but
finding as many solutions as possible is a challenging target
which makes deterministic algorithms impractical.

III. RELATED WORK

Deterministic attempts to solve N-Queens have been suc-
cessful only for values of N up to 26 [21], [25], and
attempts to find single solutions quickly have been made
for versions of the problem up to N = 500, 000 [22].
There are no known integer sequences or proofs which can
represent the number of distinct solutions for N > 26, nor is
there a deterministic means which can find them all within
reasonable time frames. Traditional GAs have been used to
find multitudinous solutions within fixed time frames [11],
[12]. The same approach is utilized in our experiments.

Since tuning control parameters has a profound effect on
the performance of GAs, one might conclude that there is
an optimal static mutation probability [6] for solving N-
Queens using the traditional approach. Hesser and Männer
[15] attempted to find such a value for GA in general prob-
lems but failed, because they are problem oriented values.
Finding the pragmatic best case scenario for fixed mutation
probabilities (Mc) within traditional GA proved to be useful
for comparison in our experiments, which can be seen in our
results.

Other alternative approaches to enhancing GA for combi-
natorial optimization sought to increase population diversity
in order to overcome wasteful convergence to local optima,
which is problematic in N-Queens since it has a huge number
of local and global optima. This behavior prevents the search
from finding more solutions. Combining standard GA with
randomly generated individuals into the population is well
studied [14], but fails to adapt to suit the problem size. Still,
exploring the nature of genetic diversity provides valuable

505

insight into the motivation for increasing diversity among
candidate solutions during the search process dynamically.

Adaptive GAs have historically manipulated control pa-
rameters by changing the mutation probability over time
[14] such that it is high during exploration or low during
exploitation. Other approaches used the overall mean pop-
ulation fitness to adjust genetic operators independent from
time [13], [16], [9]. Alternative adaptive approaches have
changed mutation probabilities between two values based on
fitness values [16], while others attempted to individually
specify genetic operator probabilities for each phenotype,
encoded with meta-operators that govern their evaluations
[7]. Many previous adaptive approaches sought to yield more
fruitful explorations of the problem landscape by tuning GA
control parameters, but most approaches have been limited
by being naı̈ve to either the problem size or the state of
exploration and diversity. However, these historical adaptive
methodologies yield many advantages over traditional GA
in that they preclude the need for a priori knowledge about
optimal control parameters, mitigating the need to ‘tune them
up’ with protracted test runs prior to long-term evaluation,
which saves time.

IV. PROPOSED APPROACH

Our main motivation for this new self-adaptive approach
was to leverage the observed tendency in nature for mutations
to occur as a result of inbreeding with genetically similar
specimens [18], [19]. Nature adjusts the mutation rate based
on the diversity of the population. Our desire was to replicate
this behavior in GA. We noted that mutations that resulted
from inbreeding increased genetic diversity in biological
organisms, affecting their fitness in nature sometimes for
better or for worse. Therefore, it stood to reason that a similar
phenomenon might occur in GA. Exploring this idea yielded
surprisingly positive results.

Figure 3 shows the flowchart for the self-adaptive mutation
approach. Areas where this algorithm differs from traditional
GA are highlighted with a darker shade.

A. Chromosome Structure

We used a GA with an integer-encoded chromosome to
represent the N-Queens positions on the chessboard for
all of our tests independent of their approach. Our chro-
mosome structure includes protective embedded constraints
which reduce the size of the search space drastically. These
constraints are imposed through our data structure, which
consists of a 1-dimensional array (of size N with zero-based
numbering) that stores the column position of the queens at
each array index. The index is used to represent the row
position of each queen, preventing more than one queen
from appearing in the same row. Values stored inside the
array must be between 0 and N − 1, preventing a queen
from being placed outside the chessboard. However, we do
not restrict the values within the array from being repeated,
which can occur as a result of the crossover or mutation
operators. When repetition occurs within the array, a collision
will occur on the respective column. Our implementation

Fig. 3. Self-Adaptive GA Flowchart

TABLE II
EXPERIMENTAL CONTROL PARAMETERS

Variable Value
Similarity Threshold (St) 15%
Adaptive Mutation Bounds (Ma) [1, 99]
Adaptive Mutation Increment (Ma∆) 1
Crossover Probability (Pcrossover) 70%
Cloning Probability (Pcloning) 30%
Adaptive Mutation Probability (Padaptive) variable
Population Size (P) 64

uses traditional GA operators - selection, crossover, and
mutation. Ordinary roulette wheel selection [20] is used in
conjunction with single-value uniform mutation and single-
point crossover/recombination [17]. This means that where
mutation occurs, genes may take any value within the bounds
of the problem size with equal probability.

506

B. Self-Adaptive Mutation

Chromosome similarity is used as a main feature in our
adaptation approach. The probability for the mutation opera-
tor is dynamically adjusted, while recombination (Pcrossover)
remains at a single static value as in traditional GA. Our
experimental settings for the genetic operators are given in
Table II.

In order to apply our self-adaptive mutation approach,
a two step process is required. First, each generation’s
chromosomes’ similarity must be evaluated. The similarity
algorithm is detailed in Algorithm 1. Next, the mutation
probability is adjusted accordingly in order to adapt. This
allows the population to be diversified when it is required to
improve the search.

When the chromosome similarity is less than the spec-
ified threshold (St), the population is too dissimilar (high
diversity). This means the adaptive mutation probability
(Padaptive) must decrease, because the population is not
inbred. For the next generation, the mutation probability is
subtracted by Ma∆ indicated in Table II. After application of
genetic operations and selection on the population, the next
generation is populated and their chromosome similarity is
calculated. If the chromosome similarity has increased, and
if it is ever above the specified threshold, the population is
inbred. Padaptive must increase by the fixed delta in the next
generation to adapt.

Variations in chromosome similarity may result indepen-
dently of the applied uniform mutation operator. Since the
recombination probability (Pcrossover) is 70%, the recombi-
nant permutations are likely to be approximately 30% similar
(due to cloning) unless uniform mutation has occurred on the
cloned genes. Our experimental observations indicate that
when using adaptive mutation the chromosome similarity
will approach an equilibrium percentage approximately equal
to the specified similarity threshold (St) as generations
evolve.

C. Chromosome Similarity Algorithm

Chromosome similarity is calculated using a deterministic
algorithm, presented in Algorithm 1. First, the chromosomes’
genes are decoded and re-encoded into integer values and
concatenated into one large integer. Next, the resultant array
of integer representations is sorted. Our implementation
uses the quick-sort algorithm provided by Java for minimal
computational overhead. This gives the similarity algorithm
its characteristic asymptotic behavior, as the complexity of
the sorting function itself is of higher complexity than the
rest of the main similarity calculation algorithm. Quick-
sort runs in O(n log n) complexity, although it should be
noted that in the theoretical worst case, quick-sort works in
O(n2) which is highly unlikely. The main algorithm runs in
O(n) linear complexity independent of the sorting. Similar
chromosomes have the same genes. A population with 100%
similarity is completely identical. If there is a population
such that P = 4, and two separate pairs of 2 chromosomes
in that population are the same, the population also has

100% similarity. The emphasis with the similarity calculation
is to isolate and distinguish the proportion of individually
dissimilar chromosomes from the rest of the population.

Function Similarity(chromosomes)
input : An array of chromosomes
output: Fraction of chromosomes that are similar

similar ← 0
matched ← false
length ← length of chromosomes

// Use arbitrary sorting algorithm
sorted ← Sort(chromosomes)

for i← 0 to length− 1 do
if sorted[i] == sorted[i+ 1] then

similar ← similar + 1
matched ← true

else if matched then
similar ← similar + 1
matched ← false

end

// Check: last item is a match
if matched and (i+ 1 == length− 1) then

similar ← similar + 1
end

end

return similar/ length
end

Algorithm 1: Chromosome Similarity Evaluation Function

D. Fitness Function

Candidate solution fitness is evaluated by determining the
number of collisions (C) between queens on the chessboard.
This means that in a board state where one queen can attack
another, two collisions result. When three queens can attack
another, 6 collisions result. The algorithm for determining
the fitness of a given board state is given in Algorithm
2, showing the mechanisms used to find collisions across
diagonals and columns on the board. The overall board state
fitness is calculated as fitness = 1

C , where fitness = 1 if
C = 0. Maximum fitness is achieved when C = 0 as there
are no collisions, resulting in a distinct board solution. For
example, in the classical 8-Queen problem, the ideal fitness
is 1, and the worst case fitness is 1/56.

E. Identifying Distinct Solutions

In each generation there is always a strong possibility that
some of the chromosomes in the current population are valid
solutions - any of the current generation’s chromosomes with
a fitness of 1 is some sort of solution. Whether it is distinct or
not is unknown at first. When a solution is found, it must be
compared to the list of previously found solutions to deter-
mine whether it is distinct. Symmetry operations are applied
to each solution found to generate more distinct solutions
based on the symmetrical nature of the chessboard. This

507

Function Fitness(chromosome)
input : A single chromosome
output: A fitness value for the chromosome

collisions ← 0
length ← length of the chromosome

for i← 0 to length− 1 do
// Compare each gene
j ← (i+ 1) mod length
while j != i do

yi ← chromosome[i]
yj ← chromosome[j]

// Check: column queens
if yi == yj then

collisions ← collisions + 1
end

// Check: diagonal queens
if abs((i− j) / (yi − yj)) == 1 then

collisions ← collisions + 1
end

j ← (j + 1) mod length
end

end

if collisions == 0 then
return 1

else
return 1 / collisions

end
end

Algorithm 2: Fitness Function

may further increase the likelihood that the new population’s
solutions have already been found previously. Therefore,
indistinct solutions are discarded without having symmetry
operations applied as their reconfiguration would already be
identical to symmetric configurations of previously found
distinct solutions. After saving newly found solutions, the
new generation replaces the previous generation and the GA
continues.

Symmetry operations consist of three 90◦ rotations, a
horizontal reflection, and then 3 further 90◦ rotations of
the reflected board. Each symmetrical board configuration
is a candidate solution that is checked against the existing
distinct solutions. It is discarded if it has already been found
previously, because it is indistinct. Each distinct solution
can potentially yield up to 7 additional distinct solutions
depending on the placement of queens, giving 8 solutions
in total.

V. EXPERIMENTS

We measured the performance of our self-adaptive ap-
proach using an empirical study. Our methodology was to
solve N-Queens for various values of N with a limited
budget of generations. Number of function calls (NFC) is
given as P × Generations where P = 64 as specified in

TABLE III
EXPERIMENTAL TRIALS

N Budget (Generations) Trials
8 10,000,000 30
9 10,000,000 30
10 10,000,000 30
11 10,000,000 30
12 10,000,000 30
13 10,000,000 30
14 10,000,000 30
15 10,000,000 30
16 10,000,000 30
18 10,000,000 15
20 10,000,000 15
22 10,000,000 15
24 10,000,000 15
26 10,000,000 15
32 50,000,000 10

Table II, as the fitness evaluation function is called P times
per generation. Each experiment was repeated a multitude
of times to ensure accuracy and collect aggregate statistics.
Table III shows the number of generations permitted and the
number of trials run for each value of N . Special budgets
and trial multiplicities were set for N = 32 in order to
accommodate the exceptionally large problem size.

Our control used traditional GA with fixed mutation
probabilities (Mc) of Mc = 1%, 5%, 10% to 100% (with
a step size of 5%) to solve each N-Queens problem. These
trials were run with the same multiplicity and budget as our
self-adaptive approach. The goal of the control trials was
to approximately determine the optimal Mc for finding the
most solutions for each problem in the given time budget,
and finding the first solution fastest. Our aim was to test our
new approach against a reasonable approximation of the best
possible performance that the traditional GA approach can
provide. Optimized control parameters for mutation would
be determined and used as a benchmark, similar to Hesser
and Männer’s study [15].

Given the increasingly large problem sizes, the number of
tests were reduced in order to allow experimentation to com-
plete within reasonable time frames. Descriptive statistics
were gathered every 1000 generations, with mean calculated
using the grand mean.

VI. RESULTS AND ANALYSIS

The performance difference with respect to the number of
found solutions can be seen in Table IV. The traditional GA
approach performs marginally better in the range of small
problems, which are most efficiently solved with determin-
istic methods. This range consists of values of N ≤ 15. Our
self-adaptive approach yields more solutions for values of N
where N > 15. As N increases, the difference widens; the
self-adaptive approach provides increasingly better results for
this objective as the problem size increases.

We observed that there is a proportional inverse relation-
ship between N and the best experimentally determined
Mc. As N increases, the best Mc which yielded the most
solutions decreases. The point this raises is that there is an

508

unfair advantage for the traditional GA over the self-adaptive
approach, since the optimal static Mc changes as N changes.
But we know that the ideal Mc for all problems are unknown.
Generally, foreknowledge of the ideal Mc is not available
in order to exploit this advantage [15], but in this case
it was experimentally determined. Optimally tuned control
parameters are critical and provide a major advantage. Still,
the self-adaptive approach consistently outperformed tradi-
tional GA with optimized parameters for the large problem
sizes, even as the parameters were adjusted to better suit the
problem. Our conclusion is that the self-adaptive approach
will continue to outperform the traditional GA method as N
grows, based on the increasing gap in performance observed.
The main reason is that even the most optimal value of the
mutation rate remains unchanged during the search process.
This is why traditional GA cannot compete with our self-
adaptive scheme.

Fig. 4. Chromosome Similarity vs. Generations for the 32-Queen Problem
(Self-Adaptive)

Fig. 5. Mutation Probability vs. Generations for the 32-Queen Problem
(Self-Adaptive)

Our analysis of the algorithm shows that the self-adaptive
approach adjusts the mutation probability throughout the
duration of the solution search. In contrast to historical
approaches, the adaptive approach does not adapt based on

one characteristic of the problem, the stage of the search,
position of the individuals on the landscape, or fitness values.
Our results also show that adaptation occurs every genera-
tion, since stochastic factors routinely influence the similarity
beyond or below the similarity threshold (St). This behavior
can be seen in Figure 4, which shows that the chromosome
similarity changes as a result of the mutation operator to
approach the specified St. Figure 5 shows the corresponding
changes in mutation probability over generations based on
similarity. Comparatively, Figure 6 shows the similarity over
generations of the most optimal traditional mutation operator
found for the 32-Queen problem, Mc = 0.65. At this
mutation probability, traditional GA tends toward a similarity
of 25% ± 1%, with lower and upper extrema at 1.8%
and 26.4%. This lies in stark contrast to the self-adaptive
approach which tended toward the specified St (15%), using
adaptive mutation probabilities that tended toward 73.7%
with lower and upper extrema at 70.8% and 74.5%.

Fig. 6. Chromosome Similarity vs. Generations for the 32-Queen Problem
(Traditional GA, Mc = 0.65)

The self-adaptive approach increases diversity and gener-
ates more diverse candidate solutions for efficient traversal of
the areas of the problem landscape that contain undiscovered
solutions. The diversity is increased because the search is
prevented from regenerating identical chromosomes, flooding
the population with clones. Controlling similarity allows
the self-adaptive approach to strike a balance between con-
vergence, exploration, and exploitation. Therefore, there is
a reverse relationship between diversity and chromosome
similarity which enables the diversity of the population to
be controlled by the specified threshold (St). In traditional
GA, when the chromosome similarity is too high, diversity is
low and few solutions are found. This is evident by the poor
performance yielded by traditional GA in our benchmarks
where Mc is very small. There is no mechanism other than
the constant background mutation that increases diversity
among the population, since recombination of identical chro-
mosomes results in a clone regardless. Conversely, when
mutation is too frequent (such as in high values of Mc

like 100%), similarity becomes low and the diversity of
the population becomes too high to allow optima to be

509

Administrator
Highlight

TABLE IV
MOST N-QUEENS DISTINCT SOLUTIONS

Distinct Solutions Found
N Best Mc Best Mc Self-Adaptive % Difference
8 0.95 92 92 ± 0%
9 0.95 352 352 ± 0%
10 0.9 724 724 ± 0%
11 0.85 2,680 2,680 ± 0%
12 0.85 13,690 11,986 −12.45%
13 0.8 32,128 26,308 −18.12%
14 0.8 41,520 29,520 −28.90%
15 0.8 30,356 30,324 −0.11%
16 0.8 15,016 30,132 +100.67%
18 0.75 16,392 27,120 +65.45%
20 0.75 7,872 25,608 +225.30%
22 0.7 6,008 25,376 +322.37%
24 0.7 6,440 24,560 +281.37%
26 0.7 6,280 23,008 +266.37%
32 0.65 15,216 104,080 +584.02%

TABLE V
FIRST N-QUEENS DISTINCT SOLUTION

Number of Generations
N Fastest Mc Fastest Mc Self-Adaptive % Difference
8 0.75 45 91 −50.55%
9 0.8 121 186 −34.95%
10 0.8 261 417 −37.41%
11 0.7 444 364 +21.98%
12 0.65 457 463 −1.30%
13 0.7 448 582 −23.02%
14 0.65 494 609 −18.88%
15 0.65 598 513 +16.57%
16 0.65 662 606 +9.24%
18 0.65 911 688 +32.41%
20 0.55 889 862 +3.13%
22 0.5 1,234 1,211 +1.90%
24 0.4 1,209 1,182 +2.28%
26 0.45 1,599 942 +69.75%
32 0.5 2,298 1,995 +15.19%

converged upon. The search algorithm turns into a random
walk approach. When solutions are converged upon in the
self-adaptive approach, diversity increases as the mutation
rate adapts in order to expand the search to other unexplored
regions of the landscape. This behavior is the desirable
characteristic of the self-adaptive approach that makes it
ideal for highly multi-modal problems with many optima
like N-Queens. Controlled similarity prevents the GA from
being stuck in a plateau of similar local optima, while
also preventing the search from being wildly dissimilar and
random, failing to converge on global optima.

A. Testing Against Multi-Perspective Challenges

While our primary goal was to compare which approach
generated as many solutions as possible on a fixed budget,
the secondary aim of the N-Queens problem is to generate a
single solution as quickly as possible. This can theoretically
be performed in polynomial time using deterministic methods
[23], [24], and is shown to be most efficient in our results
presented in Table VI. When the problem size is very
large this is nowhere near as fast or efficient as stochastic
approaches.

TABLE VI
FIRST N-QUEENS DISTINCT SOLUTION – DETERMINISTIC

Number of Function Calls (NFC)
N Deterministic [22] Self-Adaptive∗ % Difference
8 876 5,824 −84.96%

9 333 11,904 −97.20%

10 975 26,688 −96.35%

11 517 23,296 −97.78%

12 3,066 29,632 −89.65%

13 1,365 37,248 −96.34%

14 26,495 38,976 −32.02%

15 20,280 32,832 −38.23%

16 160,712 38,784 +314.38%

18 743,229 44,032 +1, 587.93%

20 3,992,510 55,168 +7, 137.00%

22 38,217,905 77,504 +4.92× 104%

24 9,878,316 75,648 +12.96× 104%

26 10,339,849 60,288 +17.10× 104%

32 2,799,725,104 127,680 +2.19× 106%

∗NFC is given as P ×Generations, where P = 64.

TABLE VII
FIRST 32-QUEENS DISTINCT SOLUTION – ALL MUTATION RATES

Mc Number of Generations % Difference∗

0.01 168,977 +8, 370.03%

0.05 18,961 +850.43%

0.1 14,286 +616.09%

0.15 9,590 +380.70%

0.2 6,628 +232.23%

0.25 4,563 +128.72%

0.3 3,480 +74.44%

0.35 3,548 +77.84%

0.4 3,290 +64.91%

0.45 2,310 +15.79%

0.5 2,298 +15.19%

0.55 9,143 +358.30%

0.6 63,428 +3, 079.35%

0.65 4,321,895 +2.17× 105%

0.7 36,873,976 +1.85× 106%

0.75 50,000,000 (No Sol.) +2.51× 106%

0.8 50,000,000 (No Sol.) +2.51× 106%

0.85 50,000,000 (No Sol. +2.51× 106%

0.9 50,000,000 (No Sol.) +2.51× 106%

0.95 50,000,000 (No Sol.) +2.51× 106%

0.95 50,000,000 (No Sol.) +2.51× 106%

1.0 50,000,000 (No Sol.) +2.51× 106%

Self-Adaptive 1,995 Avg. = +8.92× 105%

∗% Difference is given as Generations Mc−Self-Adaptive
Self-Adaptive × 100%

Table VII shows how the self-adaptive approach compares
to each individual Mc used to solve the 32-Queens problem
with traditional GA. 32-Queens is the largest and most dif-
ficult problem of our experimental dataset. In this exemplar,
the self-adaptive approach beats every mutation probability
tested including the most optimal Mc. Compared across each
fixed mutation rate, on average the self-adaptive approach

510

is 891917% better, which represents a staggering difference
in performance. Compared to a ‘sensible’ value which is
typically used for most problems without prior knowledge
of the landscape (such as Mc = 0.7 [17]) the difference in
performance is very prominent at 1848220%.

Table V shows our results for how many generations
were required for the self-adaptive approach to find the
first solution to each N-Queens problem, compared to the
best possible Mc used in traditional GA. The experimental
conditions were the same as the previous experiment, with
data collected concurrently from the same trials. Our results
show that the self-adaptive approach was able to generate a
solution quicker than traditional GA, even given the same
unfair advantage presented in the previous experiment. We
show that even with the best possible values of Mc to produce
the fastest single solution, the self-adaptive approach outper-
forms the traditional GA in the problems where N > 14. The
conclusion is that even in terms of simultaneously finding the
most solutions overall, and finding the first solution fastest,
our self-adaptive approach prevails.

VII. CONCLUSIONS AND FURTHER STUDY REMARKS

The main conclusion of our study is that for both bench-
marking objectives (finding the most solutions, and finding
the first solution fastest) for the N-Queens problem, our
approach performs better than traditional GA even when op-
timized control parameters are used in its unfair benefit. This
answers the question, why not use the traditional mutation
operator (Mc)? Traditional GA with using a single Mc - even
the most optimal one - cannot adapt to the stage of search
that the algorithm is in. At some points in the traversal of the
problem landscape, it is desirable to converge on a local or
global optimum. In other circumstances, the search must be
widened. When only using mutation as a fixed background
operation naı̈vely, there is no choice. When we are using a
self-adaptive approach, mutation probability can be changed
and adapted based on the problem size, the characteristics of
the problem landscape, problem difficulty, and time.

Exploring our self-adaptive mutation rate approach in
other NP-Complete combinatorial and optimization prob-
lems such as the Traveling Salesman Problem or Constraint
Satisfaction Problem may show that our approach is valid
for a broad range of combinatorial problems with different
characteristics. We conjecture that this is likely since other
adaptive mutation methodologies have yielded performance
improvements in various challenging problem domains.

Conducting a multivariate analysis and sensitivity analysis
of tuning other parameters in conjunction with the vari-
able adaptive mutation rate may yield further performance
improvements. For example, variable population size based
on the amount of inbreeding may yield even better results.
This conjecture is based on the fact that with higher muta-
tion rates, survival fitness decreases, resulting in population
shrinkage [11]. Coupling the population size with the muta-
tion rate and patterns of fitness in the GA population may
yield a new avenue for future study.

REFERENCES

[1] S. Tasan, S. Tunali, “A review of the current applications of genetic
algorithms in assembly line balancing,” it Journal of Intelligent Man-
ufacturing, vol. 19, pp. 49-69, Springer US, 2008.

[2] P. Larraaga et al., “Genetic Algorithms for the Travelling Salesman
Problem: A Review of Representations and Operators,” Artificial
Intelligence Review, pp. 129-170, Kluwer Academic Publishers, 1999.

[3] K. Jong and W. Spears, “Using Genetic Algorithms to Solve NP-
complete Problems,” Proceedings of the Third International Confer-
ence on Genetic Algorithms, pp. 124-132, George Mason University,
USA, 1989.

[4] K. Crawford, “Solving the N-queens problem using genetic algo-
rithms,” Proceedings of the 1992 ACM/SIGAPP symposium on Applied
computing: technological challenges of the 1990’s, SAC ’92, pp. 1039-
1047, ACM, New York, USA, 1992.

[5] A. Homaifar, J. Turner and S. Ali, “The N-queens problem and
genetic algorithms,” Southeastcon ’92, Proceedings., IEEE, pp. 262-
267, Birmingham, AL USA, 1992.

[6] P. Andrews, “An investigation into mutation operators for particle
swarm optimization,” Evolutionary Computation, 2006. CEC 2006.
IEEE Congress on, pp. 1044-1051, 2006.

[7] A. Tuson and P. Ross, “Adapting operator settings in genetic algo-
rithms,” Evolutionary computation, vol. 6, no. 2, pp. 161-184, The
MIT Press, 1998.

[8] D. Wolpert and W. Macready, “No free lunch theorems for optimiza-
tion,” Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1,
pp. 67-82, IEEE, 1997.

[9] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 24, no. 4, pp. 656-667, IEEE, 1994.

[10] M. Srinivas and L. Patnaik, “Genetic algorithms: A survey,” Computer,
vol. 27, no. 6 pp. 17–26, IEEE, 1994.

[11] D. Goldberg and J. Holland, “Genetic algorithms and machine learn-
ing,” Machine learning, vol. 3, no. 2, pp. 95-99, Springer, 1988.

[12] D. Goldberg, “Genetic and evolutionary algorithms come of age,”
Communications of the ACM, vol. 37, no. 3, pp. 113-119, ACM, 1994.

[13] K. Jong, “Adaptive system design: a genetic approach,” Systems, Man
and Cybernetics, IEEE Transactions on, vol. 10, no. 10, pp. 566-574,
IEEE, 1980.

[14] Z. Ye, Z. Li and M. Xie, “Some improvements on adaptive genetic
algorithms for reliability-related applications,” Reliability Engineering
& System Safety, vol. 95, no. 2, pp. 120-126, Elsevier, 2010.

[15] J. Hesser and R. Männer, “Towards an optimal mutation probability
for genetic algorithms,” Parallel Problem Solving from Nature, vol.
496, pp. 23-32, Springer Berlin Heidelberg, 1991.

[16] J. Coyne and R. Paton, “Genetic algorithms and directed adaptation,”
IEEE Transactions on Circuits and Systems, vol. 33, no. 5, pp. 533-
541, 1986.

[17] M. Negnevitsky, Artificial Intelligence: A Guide To Intelligent Systems,
Pearson Education Limited, edition 2, 2005.

[18] R. Clark, J. Stainer, H. Haynes, R. Buckner, JE. Mosier, AJ. Quinn
and others, Medical and genetic aspects of purebred dogs, Veterinary
Medicine Publishing Co., 690 South 4th Street, 1983.

[19] P. Mannucci and E. Tuddenham, “The hemophiliasfrom royal genes
to gene therapy,” New England Journal of Medicine, vol. 344, no. 23,
pp. 1773-1779, Mass Medical Soc., 2001.

[20] D. Goldberg and K. Deb, “A comparative analysis of selection schemes
used in genetic algorithms,” Urbana, vol. 51, pp. 61801-2996, 1991.

[21] Masehian, Ellips et al., “Landscape analysis and efficient metaheuris-
tics for solving the n-queens problem,” Computational Optimization
and Applications, vol. 56, pp. 735-764, 1991.

[22] C.S. Pearson and M.S. Pearson, “A140450 The count of how many
queens must be placed tentatively onto a board while seeking a
first solution to the ”N-Queens on an N x N chessboard” puzzle,”
The Online Encyclopedia of Integer Sequences, Aug. 2008. [Online].
Available: http://oeis.org/A140450. [Accessed Jan. 10, 2014].

[23] B. Bernhardsson, “Explicit solutions to the N-queens problem for all
N,” ACM SIGART Bulletin, vol. 2, pp. 7, 1991.

[24] R. Sosic, J. Gu, “A polynomial time algorithm for the N-Queens
problem,” ACM SIGART Bulletin, vol. 1, pp. 7-11, 1990.

[25] R.G. Spallek, T.B. Preußer and B. Nägel, “QUEENS@TUD: The
World Record by FPGAs!,” Technische Universität Dresden, Aug.
2009. [Online]. Available: http://queens.inf.tu-dresden.de. [Accessed
Jan. 13, 2014].

511

